

Leibniz Universität Hannover

INNOVATIVE TECHNOLOGIES FOR THE FUTURE

Chemistry

16671 Selective determination of the mRNA expression profile of single cells by an optogenetic switch (via the LOV domain) and subsequent single-cell sequencing

Introduction / Abstract

Optogenetics as a new field of research in genetics analyses the effect of lasers on single cells.

Background

Selections of cells or tissues from a mixture of thousands of cell populations can be carried out after microscopic identification by known methods such as "Laser Capture Microdissection" by Palm.

Motivation

The identification of single cells from a mixture of thousands of cell populations is not yet possible.

Innovation / Solution

The invention enables the selective determination of the mRNA expression profile of single cells by an optogenetic switch over a LOV domain and subsequent single-cell sequencing. The unambiguous assignment of the cells to be analysed in a cell culture dish is to be carried out using light of a defined wavelength. The mRNA of these cells should be made to transcribe, while neighbouring cells show no transcription and are therefore not relevant.

Benefits

- Microscopic identification of single relevant cells possible.
- Determination of the expression profile of specially labelled cells from a mixed cell population possible.
- Possibility to manipulate defined cells in the cell culture dish and subsequent sequencing of the mRNA of these cells.

Fields of application

The field of application of this invention can be classified as life science, biotechnology, medicine and pharmaceuticals. Specifically, it is a new technology, optogenetics, which combines methods from optics and genetics. Technology Readiness Level TRL 5

Patent situation

Country: DE Code: 10 2018 216 872 A1 Status: pending

Service

License for commercial use / Cooperation possible

Keywords

cell population, cells, expression, gene expression, genetics, identification, laser, light, lov, mrna, optical, photosensitive, profile, selective, sequencing, single cell, switch, transcription

Contact

Dipl.-Ing. Susanne Deutsch Phone: +49 (0) 511 . 850 308-0 s.deutsch@ezn.de